Math.ru Библиотека

Проблема Борсука

Андрей Михайлович Райгородский

М.: МЦНМО, 2006. 56 с.
ISBN 5-94057-249-9; Тираж 2000 экз.
Серия Библиотека «Математическое просвещение», выпуск 33
Загрузить (Mb)
djvu (-) pdf (1) ps (-) html (-) tex (-)

Брошюра написана по материалам лекции, прочитанной автором 4 декабря 2004 года на Малом мехмате МГУ для школьников 9?11 классов. В ней рассказывается об одной из знаменитых задач комбинаторной геометрии ? гипотезе Борсука, которая утверждает, что в n-мерном пространстве всякое ограниченное множество можно разбить на n+1 часть меньшего диаметра. Вначале подробно анализируются случаи малых размерностей и доказывается, что при n=1, 2, 3 гипотеза верна. Далее приводятся различные оценки сверху для числа Борсука в зависимости от размерности. Кроме того, рассматривается связь гипотезы с другими проблемами и задачами комбинаторной геометрии (проблема освещения, задача Грюнбаума, задача о хроматическом числе). В заключительных главах рассматриваются контрпримеры к гипотезе Борсука и история понижения минимальной размерности, в которой строится контрпример, а также улучшения оценки снизу.

Многие главы снабжены задачами. Некоторые из них ? это упражнения, прорешав которые, читатель лучше прочувствует материал. На некоторые задачи опирается основной текст. Сложные задачи отмечены звёздочками (некоторые являются открытыми проблемами).

Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей. От читателя потребуется знание элементарных понятий комбинаторики, а, кроме того, будет полезным (но не обязательным) знакомство с аналитической геометрией и началами анализа.


Загрузить (Mb)
djvu (-) pdf (1) ps (-) html (-) tex (-)

Постоянный адрес этой страницы: http://math.ru/lib/mmmf/33