|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Серии книг
|
Числа Фибоначчи.М.: Наука, 1978. 144 с. Тираж 100000 экз. Серия Популярные лекции по математике, выпуск 6
Первый вариант текста этой книжки писался почти тридцать лет тому назад. С тех пор изменилось очень многое.
Прежде всего, и это главное, изменился математический уровень основного круга читателей популярных математических книг: интересующихся математикой школьников старших классов и их преподавателей. Созданная сеть специализированных математических и физико-математических школ и классов предопределила существенное расширение математического кругозора соответствующего контингента учащихся, которых теперь можно заинтересовать скорее не забавными элементарными фактами, а уже достаточно глубокими и сложными результатами.
Кроме того, и это является фундаментальным фактом истории математики нашего времени, существенно сместился центр тяжести математических исследований в целом. В частности, утратила свои доминирующие позиции теория чисел, и резко повысился удельный вес экстремальных задач. В самостоятельную отрасль математики сложилась теория игр. По существу возникла вычислительная математика. Все это не могло не сказаться и на содержании научно-популярной литературы по математике.
Далее, числа Фибоначчи проявили себя еще в нескольких математических вопросах, среди которых в первую очередь следует назвать решение Ю. В. Матиясевичем десятой проблемы Гильберта и далеко не столь глубокую, но приобретшую широкую известность теорию поиска экстремума унимодальной функции, построенную впервые, по-видимому, Р. Беллманом.
Наконец, было установлено довольно большое количество ранее неизвестных свойств чисел Фибоначчи, а к самим числам существенно возрос интерес. Значительное число связанных с математикой людей в различных странах приобщились к благородному хобби "фибоначчизма". Наиболее убедительным свидетельством этому может служить журнал The Fibonacci Quarterly, издаваемый в США с 1963 г.
Все сказанное определило изменения содержания книги от издания к изданию и тот вид, в котором она предлагается читателю сейчас. Во втором издании был добавлен параграф о фибоначчиевых планах поиска экстремума унимодальной функции вместе с возникающими при этом общематематическими и вычислительными вопросами. В третьем издании была расширена теоретико-числовая тематика, и этот материал из § 2 оказался полезной информацией при решении десятой проблемы Гильберта. Наконец, в настоящем издании "подтягиваются" до общего уровня и объема § 3 и 4. В § 3 приводятся ставшие классическими теоремы о точности приближений подходящими дробями и описывается роль чисел Фибоначчи в этих фактах, а в § 4 рассматривается игра "цзяньшицзы", теоретико-игровой анализ которой опирается на детальное рассмотрение фибоначчиевых представлений натуральных чисел.
Книга по-прежнему не требует от читателя знаний, выходящих за пределы школьного курса. Более трудные ее места выделены мелким шрифтом и могут быть при чтении пропущены без ущерба для понимания остального материала. Вырица 1 Н. Н. Воробьев 1978 г. СодержаниеПредисловие к четвертому изданию § 1. Простейшие свойства чисел Фибоначчи § 2. Теоретико-числовые свойства чисел Фибоначчи § 3. Числа Фибоначчи и непрерывные дроби § 4. Числа Фибоначчи и геометрия § 5. Числа Фибоначчи и теория поиска
Постоянный адрес этой страницы:
http://math.ru/lib/plm/6
|
Тематический каталог
Архивы журналов
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Олимпиады |
Научные школы |
Учительская |
История математики |
Учредители и спонсоры
|
©, Copyright |